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Motivation of the project

● Appliance of RL to solve dynamic /real world problems (robotics, autonomous 

driving, healthcare…)

● Trial and error approach of the RL process

● Deployment of RL algorithms in dynamic environments generated by a virtual 

engine (MuJoCo)
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Goals

Learn about the basics of RL (states, actions, policies…) and use a physics engine to 

produce an accurate simulation

Make the robot be able to walk in one direction

Make the robot  be able to walk over a small step without falling over

Apply the concepts of MLOps to deploy a replicable repository that can be runned by any 

user
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Our proposal: Data

4Source: Perfectial



Our proposal: Environment 

Half Cheetah Anymal C

Gym Custom with Mujoco Engine
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Our proposal: Computational Resources 

6Source: OpenAI



Our proposal: Half Cheetah NN

                       64            128             

6 Torque Outputs

1 Expected  Return

17 Half Cheetah 
Environment Inputs
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Our proposal: Anymal C NN
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12 Position Outputs

1 Expected  Return

37 Anymal C 
Environment Inputs
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Milestones 

1) Learn the theoretical base of RL ✓

2) Establish a teamwork  setup ✓

3) Get familiar with the engine ✓

4) Generate a “base” code to train a model ✓

5) + Apply code to Half Cheetah

6) + Create a Mujoco Environment function similar to Gym

7) + Apply code to ANYmal C

8) + Hyperparameter Sweep for each code

9) + Final run for each code

10) + Get videos for each run
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Project Plan 
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Results Half-Cheetah
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Results Half-Cheetah
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Results Half-Cheetah
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Results Anybotics Anymal C
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Results Anybotics Anymal C
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Results Anybotics Anymal C
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1300 2222 3347 4286

5213 6134 7647 8325



Results Anybotics Anymal C with a step
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Conclusions
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● PPO is a powerful algorithm that proved that with a small NN is capable of learning quite 
fast, solving these particular experiments in less than 24 hours training.

● Hyperparameter tuning is essential to converge on a solution but can take a lot of time.

● Transfer learning is possible when the agent and the environment are the same even 
when the NN is overfitted for a concrete task



Next steps to improve
results:

Keep on working with hyper parameter tuning.

Training Multiple Actors and parallelizing with GPU.

Add more data to the state: last actions taken, collisions, terrain, etc.

Reward tuning, for example: penalizing energy consumption to optimize movements and make 

them smoother.

Change the entropy non-linearly or take the value for the covariance matrix from a NN.

Test with a bigger neural network.
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Thanks for your attention 
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