
Deep RL with
MuJoCo

Adrià de Angulo

Daniel Matas

Hariss Mohammad Jabeen

Miquel Quesada

Advisor: JuanJo Nieto https://github.com/danimatasd/MUJOCO-AIDL

https://github.com/danimatasd/MUJOCO-AIDL

Motivation of the project

● Appliance of RL to solve dynamic /real world problems (robotics, autonomous

driving, healthcare…)

● Trial and error approach of the RL process

● Deployment of RL algorithms in dynamic environments generated by a virtual

engine (MuJoCo)

2

Goals

Learn about the basics of RL (states, actions, policies…) and use a physics engine to

produce an accurate simulation

Make the robot be able to walk in one direction

Make the robot be able to walk over a small step without falling over

Apply the concepts of MLOps to deploy a replicable repository that can be runned by any

user

3

Our proposal: Data

4Source: Perfectial

Our proposal: Environment

Half Cheetah Anymal C

Gym Custom with Mujoco Engine

5

Our proposal: Computational Resources

6Source: OpenAI

Our proposal: Half Cheetah NN

 64 128

6 Torque Outputs

1 Expected Return

17 Half Cheetah
Environment Inputs

7

Our proposal: Anymal C NN

 128 128 128

12 Position Outputs

1 Expected Return

37 Anymal C
Environment Inputs

8

Milestones

1) Learn the theoretical base of RL ✓

2) Establish a teamwork setup ✓

3) Get familiar with the engine ✓

4) Generate a “base” code to train a model ✓

5) + Apply code to Half Cheetah

6) + Create a Mujoco Environment function similar to Gym

7) + Apply code to ANYmal C

8) + Hyperparameter Sweep for each code

9) + Final run for each code

10) + Get videos for each run

9

Project Plan

10

Results Half-Cheetah

11

Results Half-Cheetah

12

Results Half-Cheetah

13

-304 1000 2000 3000

3908 5006 5734 -506

Results Anybotics Anymal C

14

Results Anybotics Anymal C

15

Results Anybotics Anymal C

16

1300 2222 3347 4286

5213 6134 7647 8325

Results Anybotics Anymal C with a step

17

Conclusions

18

● PPO is a powerful algorithm that proved that with a small NN is capable of learning quite
fast, solving these particular experiments in less than 24 hours training.

● Hyperparameter tuning is essential to converge on a solution but can take a lot of time.

● Transfer learning is possible when the agent and the environment are the same even
when the NN is overfitted for a concrete task

Next steps to improve
results:

Keep on working with hyper parameter tuning.

Training Multiple Actors and parallelizing with GPU.

Add more data to the state: last actions taken, collisions, terrain, etc.

Reward tuning, for example: penalizing energy consumption to optimize movements and make

them smoother.

Change the entropy non-linearly or take the value for the covariance matrix from a NN.

Test with a bigger neural network.

19

Thanks for your attention

20

