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Motivation of the project

e Appliance of RL to solve dynamic /real world problems (robotics, autonomous
driving, healthcare...)

e Trial and error approach of the RL process

e Deployment of RL algorithms in dynamic environments generated by a virtual
engine (MuJoCo)
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Goals

> Learn about the basics of RL (states, actions, policies...) and use a physics engine to
produce an accurate simulation

ﬁ‘ Make the robot be able to walk in one direction
ﬁ( Make the robot be able to walk over a small step without falling over

Qﬁt} Apply the concepts of MLOps to deploy a replicable repository that can be runned by any
user



\ Our proposal: Data




\ Our proposal: Environment

Half Cheetah Anymal C

Gym Custom with Mujoco Engine



Our proposal: Computational Resources

Algorithm 1 PPO, Actor-Critic Style

for iteration=1,2,... do
mm) for actor=1,2,...,] N do
Run policy 7g_,, in environment for 7" timesteps

Compute advantage estimates Al. 2 41
end for
Optimize surrogate L wrt 6, with K epochs and minibatch size M < NT
Oolg < 0
end for

Source: OpenAl



\ Our proposal: Half Cheetah NN
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\ Our proposal: Anymal C NN
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Milestones

Learn the theoretical base of RL v

Establish ateamwork setup v/

Get familiar with the engine v/

Generate a “base” code to train a model v

+ Apply code to Half Cheetah

+ Create a Mujoco Environment function similar to Gym
+ Apply code to ANYmal C

+ Hyperparameter Sweep for each code

+ Final run for each code

+ Get videos for each run
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Results Half-Cheetah
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Results Half-Cheetah

running_reward
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Results Half-Cheetah
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Results Anybotics Anymal C
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Results Anybotics Anymal C with a step
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Conclusions

e PPOis apowerful algorithm that proved that with a small NN is capable of learning quite
fast, solving these particular experiments in less than 24 hours training.

e Hyperparameter tuning is essential to converge on a solution but can take a lot of time.

e Transfer learning is possible when the agent and the environment are the same even
when the NN is overfitted for a concrete task

18



Next steps to improve
results:

Keep on working with hyper parameter tuning.
Training Multiple Actors and parallelizing with GPU.
Add more data to the state: last actions taken, collisions, terrain, etc.

Reward tuning, for example: penalizing energy consumption to optimize movements and make
them smoother.

Change the entropy non-linearly or take the value for the covariance matrix from a NN.

Test with a bigger neural network.
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Thanks for your attention
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