La relevancia de los datos en la sociedad actual es incuestionable. Un buen porcentaje de empresas, las conocidas como empresas digitales, fundamentan su modelo de negocio en la recolección, almacenaje y análisis de cualquier dato relevante para su negocio. Esta filosofía implica un cambio radical a la hora de gestionar las operaciones de las organizaciones y requiere la digitalización de todos sus procesos de negocio (por ejemplo, creando sistemas informáticos para interactuar con los clientes o proveedores -ya sean páginas web, aplicaciones móviles o sistemas GPS-, sensorizando los procesos mecánicos para monitorizarlos, etc.).
A pesar de que la digitalización de una organización es una tarea pesada, una vez hecha, los datos generados y recogidos pueden ser analizados con el objetivo de generar información relevante para la toma de decisiones del negocio. Este hecho se ha identificado como un factor de éxito determinante y diferenciador que aumenta la competitividad de las organizaciones.
Actualmente, se utiliza el término Big Data para referirse a este nuevo tipo de sistemas, que recogen y analizan datos de cualquier tipo, y los retos que suponen. La definición más popular del término Big Data está basada en las tres Vs, que representan sus tres principales retos: volumen (la digitalización de ciertos procesos puede generar grandes volúmenes de datos), variedad (fuentes de datos heterogéneos) y velocidad (en referencia al potencial tiempo de llegada y procesamiento de los datos en real-time). Hoy en día, para atacar estos tres grandes retos, el Big Data se fundamenta en dos pilares: nuevas arquitecturas (principalmente basadas en Cloud Computing y la gestión distribuida de los datos y la memoria) y los nuevos modelos de datos (como los documentos grafs, key-value o streams).
No obstante, la barrera de entrada para incorporar soluciones Big Data continua siendo muy alta para la mayoría de organizaciones, ya que su gestión y mantenimiento es muy diferente a la de cualquier otro sistema. Además, las actuales herramientas son muy poco maduras y requieren un alto grado de especialización para poder utilizarlas correctamente. Por este motivo, la especialización en este ámbito implica un reciclaje específico basado en los principales conceptos que hay detrás de estas tecnologías. Así, podemos distinguir entre la gestión de datos en sistemas Big Data (Big Data Management) y de la explotación de estos datos para extraer conocimiento relevante para la organización con algoritmos de Data Mining y Machine Learning (Big Data Analytics). Asimismo, no existe una solución universal ni de gestión ni de explotación de datos que se pueda replicar fácilmente en cualquier dominio, ya que, por definición, en estos entornos la solución depende del caso de uso (explotación) que tengamos entre manos.
Consecuentemente, en este máster en Big Data Management, Technologies and Analytics se proporciona una visión global de un ecosistema Big Data y se profundiza en ambos aspectos, gestión (Big Data Management) y explotación de los datos (Big Data Analytics), aportando aplicabilidad y visión de negocio dentro de este mundo.
Actos relacionados: