Ús de cookies

Fem servir cookies pròpies i de tercers per millorar els nostres serveis. Pots obtenir més informació i configurar les teves preferències.
Informació sobre la política de cookies

Rebutjar Cookies
Aceptar Cookies
Campus
MY_TECH_SPACE

Entrar
Campus en manteniment
Usuari i/o clau incorrectes
No tens cap entorn actiu
El teu accés ha estat restringit. Consulta amb el departament d'administració
Per problemes tècnics el campus virtual és inaccessible. Estem treballant per solucionar-ho. Disculpa les molèsties.
Inici   >  Màsters i postgraus  >  Formació  >  Postgrau en Artificial Intelligence with Deep Learning
Sol·licita informació
Sol·licita informació Sol·licita informació o l'admissió
Sol·licita l'admissió
Sol·licita l'admissió
  • discount
    10% de descompte si et matricules abans del 31 de Juliol
  • discount
    Programa inclòs a la convocatòria d'ajuts Employment Help per a professionals a l'atur o amb rendes baixes

Programa

Edició
1a Edició
Crèdits
15 ECTS (120 hores lectives)
Modalitat
Idioma d'impartició
Anglès
Preu
3.900€  3.510€ (10% de descompte si et matricules abans del 31 de Juliol)
Opcions de pagament de la matrícula

La matrícula es pot pagar:
- En un únic pagament abans del termini establert a la carta d'admissió del programa.
- En dos terminis, és a dir, fraccionant el pagament:

  • El 60% de l'import total s'ha d'abonar en el termini establert a la carta d'admissió del programa.
  • El 40% restant es pot abonar, com a màxim, fins passats 60 dies des de la data d'inici del programa.
Observacions campanya 0,7%

Inscripció oberta fins l'inici del curs o fins l'exhauriment de places.
Dates de realització
Data d'inici: 02/11/2020
Data de fi: 14/04/2021
Horari
Dilluns: 18:30 a 20:30
Dimecres: 18:30 a 20:30
Per què aquest programa?
La intel·ligència artificial (IA) és el nucli de la revolució industrial 4.0, basada en el processament automàtic de dades. La disponibilitat de grans volums de dades i recursos computacionals a costos assequibles ha fet possible l’entrenament de xarxes neuronals profundes (deep learning), una potent eina en l’aprenentatge automàtic. Múltiples empreses ja apliquen avui aquest nou paradigma de programació orientat a les dades, mentre que, paral·lelament, les Administracions públiques també desenvolupen plans estratègics per liderar el sector. Tot i això, el mateix repte es repeteix arreu: l'escassetat de professionals capaços d'entendre el potencial i les oportunitats d'aquestes eines, així com la seva implementació de forma pràctica i escalable.

Segons l’Índex 2019 en IA de la Universitat de Stanford, el 2019, la inversió privada en IA va superar els 70 milions de dòlars, amb inversions en startups superiors als 37 milions de dòlars, després d’una taxa de creixement mitjana anual constant de més del 48% des del 2010. Això ha suposat un augment significatiu de les ofertes de treball que, als Estats Units, va passar del 0,3% el 2012 al 0,8% del total d'ofertes de feina el 2019. A l’Estat espanyol, la quantitat de contractes de treball relacionats es va duplicar el 2019 respecte a la mitjana del període 2015-2016. Aquests perfils requereixen competències en processament del llenguatge natural, visió per computador i robòtica, aplicacions que recentment han experimentat grans avenços gràcies a l’aprenentatge profund. En termes de finançament públic, el finançament de la UE per a la investigació i la innovació per a IA ha crescut en 1.500 milions d'euros entre 2017 i 2019, és a dir, un augment del 70% respecte al període anterior. En aquest context és comprensible que el portal d’anàlisi del mercat laboral glassdoor.com hagi escollit l’enginyeria de dades com la millor feina dels Estats Units durant els darrers anys, sent les competències en l'aprenentatge profund les més demandades.

El postgrau en Artificial Intelligence with Deep Learning té com a objectiu satisfer la gran demanda de professionals gràcies a un equip docent amb experiència i reconeixement global tant a la indústria com a l’àmbit acadèmic. El professorat del curs desenvolupa sistemes basats en xarxes neuronals profundes per a molts clients, i també dirigeix investigacions innovadores presentades a conferències científiques de primer nivell com la Conference on Neural Information Processing Systems (NeurIPS), la Conference on Computer Vision and Pattern Recognition (CVPR) o l'International Conference on Learning Representations (ICLR). Amb el seu suport, els estudiants del nostre programa adquireixen expertesa tant en implementacions pràctiques basades en PyTorch, com una base sòlida teòrica que permet entendre les seves oportunitats i limitacions.

Objectius
  • Dissenyar models d'aprenentatge profund, especialment per processar text, vídeo i àudio.
  • Optimitzar i monitorar l'entrenament de xarxes neuronals profundes.
  • Processar grans corpus de dades amb maquinari especialitzat: Central Processing Unit (CPU) i Graphics Processing Unit (GPU).
  • Implementar solucions en entorns de programari especialitzats en aprenentatge profund.
  • Desenvolupar productes basats en intel·ligència artificial.
A qui va dirigit?
  • Titulats del sector de les telecomunicacions, la informàtica, les matemàtiques i la física que vulguin desenvolupar competències en aprenentatge automàtic basat en xarxes neuronals profundes.
  • Professionals que ja treballin en l'àmbit TIC i vulguin reorientar la seva activitat cap a la intel·ligència artificial.
  • Programadors que es vulguin beneficiar de les noves oportunitats que ofereix la intel·ligència artificial.

Continguts formatius

Relació d'assignatures
4 ECTS 39h
Deep Learning
  • Introducció a l'aprenentatge automàtic. Mètriques d'avaluació.
  • El perceptró i el perceptró de múltiples capes.
  • Xarxes convolucionals, recurrents i de grafs. Models amb atenció.
  • Aprenentatge supervisat, no supervisat i reforç.
  • Entrenament per retropropagació, per població i neuroevolució.
  • Optimització. Normalització per paquets.
  • Models generatius.
  • Transferència de l'aprenentatge. Aprenentatge incremental i oblit catastròfic.
2 ECTS 18h
Computer Vision
  • Classificació d'imatges i vídeos.
  • Detecció, seguiment i segmentació d'objectes.
  • Cerca visual.
  • Reconeixement i reconstrucció 3D.
  • Predicció de l'atenció visual humana.
2 ECTS 18h
Natural Language Processing
  • Incrustacions de paraules i models de llenguatge.
  • Processament de text.
  • Classificació i resums de textos.
  • Traducció neuronal.
  • Sistemes de diàleg.
  • Recomanadors.
2 ECTS 18h
Speech and Audio Processing
  • Reconeixement, conversió i síntesi de la veu.
  • Música.
  • Esdeveniments acústics.
  • Processament multimodal del vídeo: àudio i visió.
1 ECTS 9h
Reinforcement Learning
  • Markov Decision Processes.
  • Policy gradients.
  • Deep Q-Learning.
  • Actor-Crític.
4 ECTS 18h
Project
  • Programació en Python per a aprenentatge profund.
  • Entorns de desenvolupament per aprenentatge profund: Keras/TensorFlow i PyTorch/Caffe2.
  • Monitoratge de l'entrenament d'una xarxa: corbes d'entrenament i ús de recursos de computació.
  • Carregadors de dades. Sincronització entre CPU i GPU.
  • Computació al núvol.
La UPC School es reserva el dret de modificar el contingut del programa, que pot variar per a una major adaptació als objectius del curs.
Titulació
Diploma de postgrau expedit per la Universitat Politècnica de Catalunya. Emès en virtut de l'art. 34.1 de la L.O. 4/2007, de 12 d'abril, per la qual es modifica la L.O. 6/2001, de 21 de desembre, d'Universitats. Per a la seva obtenció és necessari tenir una titulació universitària oficial. De no ser així, l'estudiant obtindrà un certificat de superació del programa expedit per la Fundació Politècnica de Catalunya.

Metodologia d'aprenentatge

La metodologia docent del programa facilita l'aprenentatge de l'estudiant i l'assoliment de les competències necessàries.

La metodologia d’aprenentatge del programa combina continguts impartits en directe (70%) i enregistrats (30%). Aquest esquema prioritza la interacció en línia entre professorat i estudiants, però també aprofita la flexibilitat horària dels vídeos enregistrats.

Hi ha dos tipus de sessions en directe: pràctiques i teòriques. Les sessions pràctiques es basen en el desenvolupament en directe d’un cas pràctic que els estudiants programen en sincronització amb el professorat, que atendrà les seves consultes. Les sessions teòriques s’estructuren a partir d’una xerrada enregistrada visualitzada prèviament pels estudiants en l’horari que més els convingui. Durant la sessió en directe, el professorat revisarà els continguts de la presentació, resoldran les consultes dels estudiants i proposaran exercicis per consolidar l’aprenentatge. Les sessions seran enregistrades i posades a disposició dels estudiants per a la seva revisió.

Tots els estudiants han de disposar d’accés a Internet d’alta velocitat per accedir a les conferències de vídeo en directe i un ordinador amb un modern navegador web.



Eines d'aprenentatge
Sessions magistrals participatives
S'exposen els fonaments conceptuals dels continguts a impartir, tot promovent la interacció amb els estudiants per guiar-los en l'aprenentatge dels diferents continguts i el desenvolupament de les competències establertes.
Sessions pràctiques a l'aula
S'apliquen els coneixements en un entorn real o hipotètic, on s'identifiquen i treballen aspectes específics per facilitar la comprensió, amb el suport dels docents.
Resolució d'exercicis
Es treballen les solucions mitjançant l'exercitació de rutines, l'aplicació de fórmules o algoritmes i se segueixen procediments de transformació de la informació disponible i la interpretació dels resultats.
Tutories
Es dona suport tècnic als estudiants en el desenvolupament del projecte final, en funció de la seva especialitat i de la temàtica del projecte.
Criteris d'avaluació
Assistència
Es requereix com a mínim el 80% d'assistència a les hores lectives.
Grau de participació
S'avalua la contribució activa dels estudiants en les diferents activitats proposades per l'equip docent.
Resolució d'exercicis, qüestionaris o exàmens
Proves individuals amb l'objectiu d'avaluar el grau d'aprenentatge i l'adquisició de competències.
Realització i presentació del projecte final
Projectes individuals o grupals en els quals s'apliquen els continguts impartits en el programa. El projecte pot estar basat en casos reals i comprendre la identificació d'una problemàtica, el disseny de la solució, la seva implementació o un pla de negoci. Comptarà amb una presentació i defensa pública del mateix projecte.
Pràctiques i borsa de treball
Des del campus virtual My_Tech_Space els estudiants podran visualitzar les ofertes de treball del seu àmbit de coneixement i presentar la seva candidatura confidencialment. La borsa de treball de la UPC School té un volum anual de centenars d'ofertes de treball, entre contractes laborals i convenis de col·laboració en pràctiques.
Campus virtual
Els estudiants d'aquest postgrau tindran accés al campus virtual My_Tech_Space, una eficaç plataforma de treball i comunicació entre estudiants, el professorat, la direcció i la coordinació del curs. My_Tech_Space permet obtenir la documentació de cada sessió formativa abans de l'inici, treballar en equip, fer consultes als professors, visualitzar notes, etc.

Equip docent

Direcció Acadèmica
  • Giró Nieto, Xavier
    Veure perfil a futur.upc
    Professor agregat de la Universitat Politècnica de Catalunya (UPC) especialitzat en aprenentatge profund aplicat a dades multimèdia. Ha treballat com a investigador visitant a la Universitat de Columbia de Nova York. Actualment treballa en col·laboració amb el Barcelona Supercomputing Center amb projectes finançats per Facebook, La Caixa i les Administracions públiques catalanes i espanyoles. Ha impulsat un ampli catàleg de cursos d'intel·ligència artificial a l'Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona (ETSETB) de la UPC.
  • Ruiz Costa-Jussà, Marta
    Veure perfil a futur.upc / Veure perfil a Linkedin
    Doctora enginyera de Telecomunicació per la Universitat Politècnica de Catalunya (UPC). Màster en Tecnologies de la Llengua i la Parla i European Master of Research on Information and Communication Technologies, ambdós per la UPC. Ha treballat al Laboratori d'Informàtica per a Ciències de la Mecànica i l'Enginyeria (LIMSI) del Centre Nacional Francès d'Investigacions Científiques (CNRS) de París, al Centre d'Innovació Media de Barcelona, a la Universitat de São Paulo, a l'Institute for Infocomm Research de Singapur i a l'Institut Politècnic Nacional de Mèxic. Actualment, és investigadora de Ramón y Cajal de la UPC i encapçala els projectes DeepVoice i ALLIES.
Professorat
  • Bellver Bueno, Míriam
    Veure perfil a Linkedin
    Enginyera de Telecomunicació per la Universitat Politècnica de Catalunya (UPC). Durant la tesi del grau va començar a treballar en el món de la visió per computador en el Grup de Processament d'Imatge de la universitat. Màster en Telecomunicacions per la UPC. Va completar la tesi del màster a l'Escola Politècnica Federal de Zuric (ETH). L'any 2016 va obtenir una beca de l'Obra Social "La Caixa", amb el programa Internacional de Beques La Caixa-Severo Ochoa, per fer el seu doctorat al Barcelona Supercomputing Center en temes de visió per computador fent servir tècniques d'aprenentatge profund. Els seus principals temes d'interès en la recerca són la detecció i segmentació d'objectes en imatges.
  • Bou Balust, Elisenda
    Veure perfil a futur.upc
    Doctora enginyera de Telecomunicació per la Universitat Politècnica de Catalunya (UPC). Màster en Electrònica/Aerospai UPC-Massachusetts Institute of Technology (MIT). És cofundadora i CTO de Vilynx, on lidera un equip d'enginyeria de més de quaranta persones amb l'objectiu de construir el primer sistema d'intel·ligència artificial amb autoaprenentatge. Té més de deu anys d'experiència en sistemes complexos distribuïts, task scheduling i intel·ligència artificial, camps que combina amb ontologies/knowledge graphs, self-learning (autoaprenentatge), emergència de funcions i reasoning.
  • Cámbara Ruiz, Guillermo
    Veure perfil a Linkedin
    Ajudant de recerca a Telefónica I+D, on s'està especialitzant en aprenentatge profund aplicat al processament del llenguatge a través de la biometria i les aplicacions lingüístiques. Anteriorment, va ser enginyer d'R+D a G+D Mobile Security, on va treballar com a lead tester especialista en sistemes operatius d'eSIM. Es va graduar en Física per la Universitat de Barcelona (UB) i actualment està acabant un màster en Sistemes Intel·ligents Interactius a la Universitat Pompeu Fabra (UPF).
  • Campos Camúñez, Víctor
    Veure perfil a Linkedin
    Enginyer electrònic i màster en Enginyeria Electrònica per la Universitat Politècnica de Catalunya (UPC). Actualment, porta a terme la tesi doctoral sobre la convergència entre l'aprenentatge profund i la computació d'alt rendiment al Barcelona Supercomputing Center, amb el suport de l'Obra Social La Caixa a través del Programa Internacional de Beques La Caixa-Severo Ochoa. Ha fet estades de pràctiques al Centre de Recerca Alemanya per a la Intel·ligència Artificial (DFKI), a la Universitat de Columbia i a Salesforce Research. Les seves línies de recerca són l'aprenentatge automàtic a gran escala.
  • Casas, Noe

    És doctorand en traducció automàtica neuronal a la Universitat Politècnica de Catalunya (UPC) i porta a terme recerca industrial a Lucy Software. Té un màster en Intel·ligència Artificial per la Universitat Nacional d'Educació a Distància (UNED). Té més de dos anys d'experiència professional com a científic de dades i més de deu com a enginyer de software i arquitecte de software a la indústria aeroespacial.
  • Escolano Peinado, Carlos

    Màster en Intel·ligència Artificial per la Universitat Politècnica de Catalunya (UPC). Enginyer Informàtic per la UPC. Actualment és estudiant de doctorat al Departament de Teoria del Senyal i Comunicacions de la UPC, on treballa en traducció automàtica amb xarxes neuronals.
  • Favory, Xavier
    Veure perfil a Linkedin
    Màster en Acústica, Processament de Senyals i Informàtica Aplicats a la Música (ATIAM) per l'Institut de Recherche et Coordination Acoustique/Musique (IRCAM) i màster en Enginyeria Electrònica per l'École Nationale Supérieure de l'Électronique et de ses Applications (ENSEA). Actualment és doctorand en informàtica aplicada a les tecnologies musicals en el Grup de Tecnologia Musical de la Universitat Pompeu Fabra (UPF). Té experiència acadèmica en processament de senyals acústics, aprenentatge automàtic i interacció persona-ordinador, i experiència pràctica en el desenvolupament d'aplicacions web.
  • Fojo Àlvarez, Daniel
    Veure perfil a Linkedin
    Data scientist a Glovo. Graduat en Matemàtiques i en Enginyeria Física pel Centre de Formació Interdisciplinària Superior (CFIS) i Màster en Matemàtiques Avançades i Enginyeria Matemàtica.
  • Giró Nieto, Xavier
    Veure perfil a futur.upc
    Professor agregat de la Universitat Politècnica de Catalunya (UPC) especialitzat en aprenentatge profund aplicat a dades multimèdia. Ha treballat com a investigador visitant a la Universitat de Columbia de Nova York. Actualment treballa en col·laboració amb el Barcelona Supercomputing Center amb projectes finançats per Facebook, La Caixa i les Administracions públiques catalanes i espanyoles. Ha impulsat un ampli catàleg de cursos d'intel·ligència artificial a l'Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona (ETSETB) de la UPC.
  • Luque Serrano, Jordi
    Veure perfil a Linkedin
    Doctor enginyer pel Departament de Teoria del Senyal i Comunicacions de la Universitat Politècnica de Catalunya (UPC). Actualment és professor associat del Departament de Ciències de la Computació de la UPC i investigador científic dintre del grup científic a Telefónica I+D. La seva investigació inclou estudis en el camp de la lingüística quantitativa, reconeixement de la parla amb pocs recursos i el processament del senyal mitjançant tècniques d'aprenentatge profund. La seva experiència a la indústria inclou el prototipatge i test A/B d'algorismes originals pel processament de la parla i el llenguatge natural, la seva integració i desplegament, juntament amb la consultoria, ideació i prospecció d'aplicacions pioneres.
  • Mcguinness, Kevin

    Assistant Professor with the School of Electronic Engineering in Dublin City University teaching Data Analytics and Machine Learning. Ph.D in Electronic Engineering (Computer Vision). Science Foundation Ireland Funded Investigator with the Insight Centre for Data Analytics. Research focuses on machine learning, deep learning, and applications in computer vision. 60+ peer reviewed publications including 12 Journal articles and 2 book chapters.
  • Mosella Montoro, Albert
    Veure perfil a Linkedin
    Enginyer en Sistemes Audiovisuals per la Universitat Politècnica de Catalunya (UPC). Va dur a terme el Treball Final de Grau sobre detecció d'objectes en trajectòria de col·lisió. Màster interuniversitari en Visió per Computador per la (UAB-UPC-UPF-UOC), en el marc del qual va dur a terme el Treball Final de Màster sobre detecció de vehicles usant segmentació d'instàncies gràcies a la col·laboració entre la UPC i Adasens Automotive GmbH. Actualment és doctorand a la UPC i les seves línies de recerca són comprensió d'escenes en 3D i tècniques d'aprenentatge profund.
  • Pons Puig, Jordi
    Veure perfil a Linkedin
    Enginyer de Telecomunicacions per la UPC, doctor en Tecnologia Musical, Grans Col·leccions de Sons i Aprenentatge Profund en el Grup de Tecnologia Musical de la Universitat Pompeu Fabra (UPF). A més, té un màster en Tecnologies del So i de la Música. Actualment és investigador a Dolby Laboratories. Va fer estades de pràctiques a l'Institut de Recherche et Coordination Acoustique / Musique de París (IRCAM), al German Hearing Center (Hannover), a Pandora Ràdio (EUA, Bay Area) i a Telefónica Research (Barcelona).
  • Ruiz Costa-Jussà, Marta
    Veure perfil a futur.upc / Veure perfil a Linkedin
    Doctora enginyera de Telecomunicació per la Universitat Politècnica de Catalunya (UPC). Màster en Tecnologies de la Llengua i la Parla i European Master of Research on Information and Communication Technologies, ambdós per la UPC. Ha treballat al Laboratori d'Informàtica per a Ciències de la Mecànica i l'Enginyeria (LIMSI) del Centre Nacional Francès d'Investigacions Científiques (CNRS) de París, al Centre d'Innovació Media de Barcelona, a la Universitat de São Paulo, a l'Institute for Infocomm Research de Singapur i a l'Institut Politècnic Nacional de Mèxic. Actualment, és investigadora de Ramón y Cajal de la UPC i encapçala els projectes DeepVoice i ALLIES.
  • Segura Perales, Carlos

    Investigador a Telefónica R&D a Barcelona. Des del 2011 fins al 2015 va treballar a Herta Security com a director d'Innovació dins el programa Torres Quevedo, treballant en reconeixement de parlants. Ha participat en projectes nacionals i europeus, i ha publicat nombrosos articles científics en revistes internacionals i conferències internacionals per experts. Els seus interessos de recerca inclouen aprenentatge profund,el processament de la veu, la visió i el llenguatge natural.
  • Serrà Julià, Joan
    Veure perfil a Linkedin
    Doctor en Tecnologies de la Informació per la UPF. Actualment és científic investigador en el grup d'IA de Dolby Laboratories. És expert en aprenentatge automàtic, aprenentatge profund, mineria de dades, processat de l'àudio, sistemes de recomanació i metaheurístiques. És coautor de més de 100 publicacions científiques en diversos àmbits, algunes d'elles de notòria repercussió, i ha participat en diversos projectes de recerca europeus. Esporàdicament realitza seminaris, docència i xerrades de divulgació, últimament sempre relacionades amb l'aprenentatge profund.
  • Torres i Viñals, Jordi
    Veure perfil a futur.upc
    Professor de la UPC i director d'investigació del BSC amb 30 anys d'experiència en docència i investigació en supercomputació, amb importants publicacions científiques i projectes de R+D a empreses i institucions. Actualment, la seva recerca se centra en la supercomputació aplicada a la Intel·ligència Artificial. Actualment és membre del Consell d'iThinkUPC i UPCnet, i actua com a entrenador, mentor i expert per a diverses organitzacions i empreses; al seu torn, també ha escrit diversos llibres tècnics, imparteix conferències i ha col·laborat amb diferents mitjans de comunicació, ràdio i televisió. Més informació a https://torres.ai.

Entitats col·laboradores

Socis col·laboradors

Sortides professionals

  • Enginyer d'intel·ligència artificial.
  • Enginyer en xarxes neuronals profundes.
  • Enginyer en visió per computador.
  • Enginyer en processament del llenguatge natural.
  • Enginyer en processament de l'àudio i de la veu.
  • Analista de dades/data scientist.


Testimonis i notícies

Testimonis

Buscava una formació per aprofundir en l'àrea del deep learning i poder entrar, així, en el món laboral. Jo partia d'un perfil totalment teòric, ja que el meu background és matemàtic. Del postgrau en Artificial Intelligence with Deep Learning destacaria, d'una banda, el seu enfocament pràctic i, de l'altra, el gran ventall de continguts tractats. A més, es treballen desenvolupaments tant clàssics com moderns de certes idees. Aquesta formació m'ha obert un camp amb noves oportunitats, ja que aquesta àrea té molta repercussió en el context actual. El projecte final va ser molt interessant, va tractar sobre la segmentació d'imatges mèdiques. La veritat és que quan vaig començar el postgrau no m'imaginava capaç de fer alguna cosa d'aquesta complexitat. En definitiva, recomanaria aquesta formació pel seu enfocament aplicat, enfocat al món laboral, en la qual aprens la mecànica que s'amaga darrere del deep learning i adquireixes les eines necessàries per posar-lo en pràctica.

Núria Sánchez, alumni del postgrau en Artificial Intelligence with Deep Learning

Testimonis<
La intel·ligència artificial és un dels temes tecnològics de més actualitat, fora i dins del món professional. A més d'un interès propi, com a membre de l'equip de digitalització d'una empresa industrial, he d'estar al dia de les tendències. Si a més puc aconseguir un coneixement tècnic detallat, això suposa un gran valor afegit tant per a l'empresa per a la qual treballo com per al meu projecte professional personal. Això és precisament el que em va aportar el postgrau en Deep Learning: una primera immersió en aquest camp de la IA, així com la possibilitat de submergir-me en més profunditat en les seves diferents àrees, en funció del meu interès. El fet que l'alumnat estigués format per professionals de diferents sectors em va aportar nous punts de vista, sobretot a l'hora d'identificar potencials projectes en els quals aplicar IA. Amb els coneixements adquirits puc promoure d'una manera informada l'ús de la tecnologia dins de l'empresa per optimitzar els processos i, fins i tot, idear noves vies de negoci

Martí Pomés, Technical Lead de Projectes de Robòtica de Processos a Omya

Testimonis<
Altres notícies
Axios: "El furor de l'AI a les universitats"
06-06-2019
Nature: "Investigadors júnior d'IA són demandats per les universitats i la indústria"
06-06-2019
Investigadors d'IA a Facebook comparteixen perspectives sobre la diversitat en el Dia Internacional de la Dona
12-03-2019
El País: "La febre del 'Big Data' arriba a l'ocupació"
03-10-2018
3/24: La meitat de les notícies que consumirem el 2022 seran falses
13-09-2018

Sol·licita informació o l'admissió

Contacte:
(34) 93 114 68 05
La teva sol·licitud ha estat rebuda correctament a la UPC School.

En breu ens posarem en contacte amb tu.

Gràcies pel teu interès en els nostres programes formatius.

Per un error en la connexió a la base de dades la teva sol·licitud no s'ha pogut cursar. T'agrairem que repeteixis el procés més tard o bé que et posis en contacte amb nosaltres trucant al (34) 93 112 08 08 o enviant-nos un correu electrònic a: webmaster.fpc@fpc.upc.edu
Has superat el tamany màxim del fitxer
  • Si tens algun dubte sobre el postgrau.
  • Si vols iniciar els tràmits per matricular-te.
Com iniciar l'admissió
Per iniciar el procés d'inscripció a aquest programa cal omplir i enviar el formulari que trobaràs al peu d'aquestes línies.

A continuació, rebràs un correu electrònic de benvinguda on es detallaran els tres passos a seguir per formalitzar el procés d'inscripció:

1. Completar i confirmar les teves dades personals.

2. Validar el teu currículum vitae i adjuntar la documentació addicional requerida, en cas que sigui necessària per a l'admissió.

3. Pagar 110€ en concepte de drets d'inscripció al programa. L'import d'aquests drets es descomptarà de la quantia total de la matrícula i només es retornarà en cas de no resultar admès.

Un cop realitzat el pagament de drets i disposem de tota la documentació, valorarem la teva candidatura i, si has estat admès al curs, t'enviarem la carta d'admissió. En aquest document obtindràs tots els detalls per formalitzar la matrícula al programa.




  política de protecció de dades

* Camps obligatoris

Informació bàsica o primera capa sobre protecció de dades

Responsable

Fundació Politècnica de Catalunya (en endavant, FPC). + INFORMACIÓ

Finalitat

Contestar les sol·licituds d’informació de l’interessat sobre activitats de formació gestionades o realitzades per l’FPC . + INFORMACIÓ

Establiment o manteniment de relació acadèmica amb l’interessat. + INFORMACIÓ

Legitimació

Consentiment de l'interessat. + INFORMACIÓ

Interès legítim en el desenvolupament de la relació acadèmica. + INFORMACIÓ

Destinataris

No hi ha cessions o comunicacions.

Drets

Accés, rectificació, supressió, limitació, oposició i portabilitat. + INFORMACIÓ

Dades de contacte del delegat de protecció de dades

info.dpo@fpc.upc.edu

Informació addicional

Política de privacitat de la nostra pàgina web. + INFORMACIÓ

Termini de conservació

Política de privacitat de la nostra pàgina web. + INFORMACIÓ

Cessió imatge

Acceptació a la cessió, per un període de 10 anys, les imatges que l’FPC pugui captar a les instal·lacions on es desenvolupi la seva activitat, a fi de difondre i promocionar les activitats de l’FPC i pel mitjà que tingui per convenient.

Serveis de pagament

En cas que l’interessat formalitzi la relació amb l’FPC, l’ordenant (interessat) autoritza i dóna el seu consentiment al càrrec, per tant, amb renuncia expressa al dret de devolució sobre el càrrec.

Enviar